

Organic Compounds

Organic chemistry is the study of the vast number of compounds that contain *carbon*. Carbon forms more compounds than any other element except *hydrogen*.

Straight-Chain Alkanes

- 1. Alkanes are *saturated* hydrocarbons, having only single covalent bonds.
 - Saturated means there is a hydrogen in every possible bonding location.
- 2. Count the carbons, use appropriate prefix, and add the suffix -ane.
- 3. Me Eat Pearut Butter corresponds to the first four alkanes (methane, ethane, propane, butane).

4. Then use the Greek prefixes associated with naming covalent compounds.

# Carbons	1	2	3	4	5	6	7	8	9	10
Prefix	Meth-	Eth-	Ргор-	But-	Pent-	Hex-	Hept-	Oct-	Non-	Dec~

5. Straight-chain alkanes have the general formula $C_n \mathcal{H}_{2n+2}$, where n equals the number of *carbor* atoms in the chain.

Practice: Draw the structural formulas for each of the alkanes below.

Pentane	Hexane	Heptane
Octane	Nonane	Decane

Complete the molecular formulas for the following alkanes.

IUPAC Name	Number of Carbons	Molecular Formula	
Methane	1		
Ethane	2		Hectane is the IUPAC
Propane	3		name for the straight-chain
Butane	4		alkane that contains 100
Pentane	5		carbon atoms. What is the
Hexane	6		molecular formula for hectane?
Heptane	7		
Octane	8		$C_{_{100}}\mathcal{H}_{_{202}}$
Nonane	9		
Decane	10		

Properties of Alkanes

- 1. Bonds in alkanes are between a carbon and hydrogen atom or between two carbon atoms.
 - a. Carbon's electronegativity value is 2.55, and hydrogen's is 2.20. The electronegativity difference for a C—H bond is 0.35, indicating a *nonpolar* covalent bond.
 - b. Since the EN difference for a C-C bond is 0.0, it is also a nonpolar covalent bond.
 - c. Therefore, alkanes are nonpolar covalent molecules.
- 2. Nonpolar covalent molecules are *immiscible* (insoluble) in water.
 - a. The attractive forces between alkane molecules are stronger than the attraction between alkane molecules and water molecules.
 - b. The solubility rule *"like dissolves like"* explains that nonpolar covalent molecules, such as alkanes, will not dissolve in a *polar* substance like water.
- 3. The first four alkanes exist as gases at room temperature. Solids appear around $C_{17}H_{36}$.
- 4. Alkanes have low boiling points due to weak intermolecular forces.
- 5. Alkanes are usually stable at room temperature and have *low* reactivity due to their relatively *strong*C—C and C—H bonds.
- 6. Alkanes are used as *fuels* because they undergo *combustion* reactions. This chemical reaction occurs when a substance reacts with *oxygen*, releasing energy as *heat* and *light*.