Synthesis Reactions

$$
\mathbf{A}+\mathbf{B} \rightarrow \mathbf{A B}
$$

Definition

- A compound is formed between:
$>$ Two elements
$>$ An element and a compound
> Two compounds

Examples

$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Write two additional examples of synthesis reactions.

$$
\begin{aligned}
& \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s}) \\
& \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})
\end{aligned}
$$

Decomposition Reactions

$$
\mathbf{A B} \rightarrow \mathbf{A}+\mathbf{B}
$$

Definition

- Compound breaks apart to create:
$>$ Two elements
$>$ One or more elements and/or compounds
$>$ Two or more compounds

Examples

$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
Write two additional examples of decomposition reactions.
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{C}(\mathrm{s})$
$2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 4 \mathrm{Ag}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$

Double Replacement

$$
\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{CB}
$$

Definition

- Two compounds react to form two new compounds by exchanging anions
- Reactants are ionic compounds or acids, usually in aqueous solution
- Insoluble products will precipitate out of solution (form a solid)
- Also known as double displacement reactions

Examples

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& 3 \mathrm{NaOH}+\mathrm{FeCl}_{3} \rightarrow 3 \mathrm{NaCl}+\mathrm{Fe}(\mathrm{OH})_{3}
\end{aligned}
$$

Predict the products.

$$
\begin{aligned}
& \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{KNO}_{3}(\mathrm{aq}) \\
& \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{BaCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{BaSO}_{4}(\mathrm{~s})
\end{aligned}
$$

Combustion Reactions

$$
\mathrm{A}+\mathrm{O}_{2} \rightarrow \mathrm{AO}
$$

Definition

- Oxygen is a reactant and an oxide is produced
- Energy is released in the forms of heat and light

Examples

$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
$2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$

Combustion of Hydrocarbons

Hydrocarbon $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Definition

- Hydrocarbons in fossil fuels are combined with oxygen at high temperatures (burning of a fuel)
- Always produces carbon dioxide and water vapor

Examples

Combustion of methane

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Combustion of ethane
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Combustion of propane

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Combustion of butane

$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Neutralization

- Reaction of an acid with a base to produce an ionic salt and water (double replacement)

$$
\begin{aligned}
& \text { Acid }+ \text { Base } \rightarrow \text { Water }+ \text { Salt } \\
& \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}
\end{aligned}
$$

Predict the products:
$\mathrm{HClO}+\mathrm{KOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{KClO}$
$\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaNO}_{3}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MgSO}_{4}$

Condensation Reactions

Definition

- Two small organic molecules combine to form a complex macromolecule (synthesis)
- Accompanied by the loss of a small molecule, such as water or ammonia

Examples

Carbohydrate Formation

$>$ Complex carbohydrates (polysaccharides) are polymers of simple sugars (monosaccharaides)

Protein Formation
$>$ Proteins are long chains of amino acids (contain amine groups involving nitrogen) joined by peptide bonds forming polypeptides

Lipid Formation
the formation of lipids (triglycerides) from three fatty acids and glycerol

Photosynthesis

$>$ complex process that converts energy from sunlight to chemical energy in the bonds of carbohydrates
$>$ Occurs in plants and some algae, taking place in chloroplasts involving chlorophyll
$>$ complementary process of respiration $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+$ sunlight $\rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$

