Stoichiometry Test Review

Terms:

1. What is stoichiometry?
2. Stoichiometry is based on what law?
3. What is a mole ratio?
4. What is the limiting reagent?
5. What is an excess reactant (reagent)?
6. What is the percent yield of an experiment?
7. What is a molecular formula?
8. What is an empirical formula?

Problems:

\qquad $\mathrm{NaOH}+$ \qquad $\mathrm{HCl} \rightarrow$ \qquad $\mathrm{NaCl}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
9. 12.5 g of NaOH are reacted with excess hydrochloric acid. How many grams of water are produced?
\qquad
10. When 9.8 g aluminum oxide decomposes, how many moles of Al metal are produced?
\qquad $\mathrm{Fe}+$ \qquad $\mathrm{S}_{8} \rightarrow$ \qquad FeS
11. Identify the limiting reactant when 16.25 g of iron reacts with 26.25 g of sulfur.
12. What is the mass of iron (II) sulfide produced from problem \#11?
\qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}$
13. Identify the limiting reactant when 1.22 moles of O_{2} reacts with 1.75 moles of H_{2} to produce water. How many moles of water are produced?
\qquad $\mathrm{SO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{3}$
14. What is the limiting reactant when 6.58 g of sulfur dioxide reacts with 1.64 g of water to form sulfurous acid? What is the excess reactant? What mass of sulfurous acid will be produced? If Ralph produced 7.03 g sulfurous acid after performing the experiment, what was his percent yield?
\qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad $\mathrm{Cl}_{2} \rightarrow$ \qquad $\mathrm{HCl}+$ \qquad O_{2}
15. What mass of hydrochloric acid (HCl) is produced if 3.47 mol chlorine reacts with 2.51 mol water? Which reactant is the excess reactant?
\qquad $\mathrm{S}_{8}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad SO_{2}
16. What number of moles of SO_{2} are produced from the reaction of 3.15 g of S_{8} and $3.65 \mathrm{~g} \mathrm{O}_{2}$?
\qquad $\mathrm{P}_{4}+$ \qquad $\mathrm{Br}_{2} \rightarrow$ \qquad PBr_{3}
17. Phosphorous and bromine react violently in a synthesis reaction. If 5.00 g of phosphorous and 35.0 g bromine react, what is the limiting reactant? Excess reactant? How many grams of PBr_{3} will be produced? If the actual yield of PBr_{3} is 30.0 g , what is the percent yield?
18. An oxide of chromium is found to have the following percent composition: $68.4 \% \mathrm{Cr}$ and $31.6 \% \mathrm{O}$. Determine the compound's empirical formula. If the compound's molecular mass is $303.98 \mathrm{~g} / \mathrm{mol}$, determine the compound's molecular formula.
19. A compound is found to have the following percent composition: $63.5 \% \mathrm{Ag}, 8.2 \% \mathrm{~N}$, and $28.3 \% \mathrm{O}$. Determine the compound's empirical formula. What is its molecular formula if it has a mass of $509.61 \mathrm{~g} / \mathrm{mol}$?
20. Determine the empirical formula of a sample of an unidentified compound that is found to contain $17.55 \% \mathrm{Na}$, $39.7 \% \mathrm{Cr}$, and $42.7 \% \mathrm{O}$.

Answers

1. See Notes/Text
2. See Notes/Text
3. See Notes/Text
4. See Notes/Text
5. See Notes/Text
6. See Notes/Text
7. See Notes/Text
8. See Notes/Text
9. Coefficients $=1,1,1,1$
$5.63 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ produced
10. Coefficients $=2,4,3$ 0.19 mol Al produced
11. Coefficients $=8,1,8$ $\mathrm{LR}=\mathrm{Fe}$
12. 25.60 g FeS produced
13. Coefficients $=2,1,2$
$L R=\mathrm{H}_{2}$
$1.75 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ produced
14. Coefficients $=1,1,1$
$L R=\mathrm{H}_{2} \mathrm{O}$
$\mathrm{XR}=\mathrm{SO}_{2}$
$7.48 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{3}$ produced 94.0% yield $\mathrm{H}_{2} \mathrm{SO}_{3}$
15. Coefficients $=2,2,4$

183 g HCl
$X R=\mathrm{Cl}_{2}$
16. Coefficients $=1,8,8$ 0.0981 mol SO 2
17. Coefficients $=1,6,4$
$L R=B r_{2}$
$X R=P 4$
$39.5 \mathrm{~g} \mathrm{PBr}_{3}$ produced
75.9\% yield PBr_{3}
18. $\mathrm{Cr}_{2} \mathrm{O}_{3}-\mathrm{Cr}_{4} \mathrm{O}_{6}$
19. $\mathrm{AgNO}_{3}-\mathrm{Ag}_{3} \mathrm{~N}_{3} \mathrm{O}_{9}$
20. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

