STOICHIOMETRY FOR STUDENTS

STOICHION	IETRY Defined:		
 - 	Law of Conservation of Mass:		
			l equation for the synthesis of ammonia from nitrogen and hydrogen
gases.			
Interpret equal	ation in terms of ①	, 2	, and ③ Then, ④ show Law of Conservation of Mass
	: number for each substan	ce indicated by	; four types:
	: number for each substan	ce indicated by	
; 3	: multiply number of mol	es of each reacta	ant and product by its
g N ₂ =		- =	g H ₂ = =
g NH ₃ =		- =	
• Observation	on of Law of Conservation of Ma	SS	
Add the	masses of the	_:	Add the masses of the:
	-	-	cts, the Law of Conservation of Mass is observed.

MOLE RATIO:

Determine all possible mole ratios for the balanced chemical equation showing the synthesis of ammonia.

How many ratios are possible? This reaction has _____ participating species. _____ the number of species by the next lower number to determine the number of possible mole ratios. For the synthesis of ammonia, _____ mole ratios are possible.

Which mole ratio should be used?

Stoichiometric Calculations:

1. Write the _____

2. Identify the ______ and the ______, and draw the ______.

3. The GIVEN must be in ______ or _____.
4. Identify the ______ that will cancel the ______.

5. Set up ______ and cancel _____ until the only unit left standing matches the ______.

6. Do the ______ and express the answer to the correct number of ______.

MOLE-to-MOLE Conversions:

Example: How many moles of ammonia are produced when

10.0 moles of hydrogen react with excess nitrogen?

UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	$mol \rightarrow g$ (UNKNOWN)
=				
=				
-				

MOLE-to-MOLE Conversions

<u>Practice 1</u>: How many moles of zinc chloride will be formed when 17.0 moles of hydrochloric acid react with excess zinc metal?

How many mole ratios are possible for this balanced equation?

Write all possible mole ratios.

UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	$mol \rightarrow g$ (UNKNOWN)
=	=			
=	=			

<u>Practice 2</u>: Potassium chlorate decomposes into potassium chloride and oxygen. How many moles of oxygen are formed when 3.20 mol KClO₃ decompose?

UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	$mol \rightarrow g$ (UNKNOWN)
	=			
	=			

MOLE-to-MASS Conversions: _____

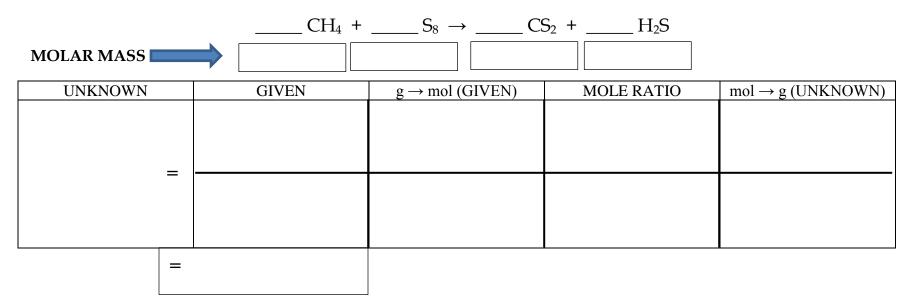
Example: Balance the following equation for the combustion of propane. Calculate the molar mass for each substance.

If 10.0 moles of propane are used, how many grams of water are formed?

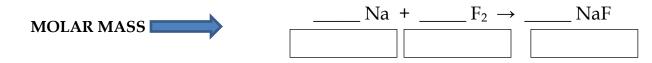
Write the mole ratios involving the UNKNOWN and the GIVEN.

UNKNOWN	GIVEN	UNKNOWN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	$mol \rightarrow g$ (UNKNOWN)
=	=	=			
	_				
	_	-			

<u>Practice 1</u>: Sulfuric acid is produced when sulfur dioxide reacts with oxygen and water. How many grams of sulfuric acid is produced when 1.50 moles sulfur dioxide completely reacts?

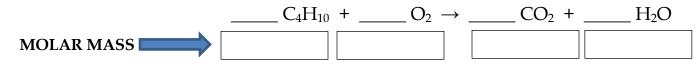


Write the mole ratios involving the UNKNOWN and the GIVEN.


UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	$mol \rightarrow g$ (UNKNOWN)
=				

MASS-to-MOLE Conversions:

Example: Methane and sulfur produce carbon disulfide and hydrogen sulfide gas, as indicated by the following equation. Suppose that 19.75 g sulfur react with an excess of methane. How many moles of carbon disulfide will form?


<u>Practice 1</u>: Sodium fluoride is formed when sodium metal reacts with fluorine gas. How many moles of sodium fluoride can be formed when 4.57 grams of fluorine gas reacts completely with excess sodium?

UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	$mol \rightarrow g$ (UNKNOWN)
=	=			

MASS-to-MASS Conversions: _____

Example: Balance the following equation for the combustion of butane. Calculate the molar mass for each substance.

If 75.5 grams of carbon dioxide are produced, how many grams of butane were used?

UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	$mol \rightarrow g$ (UNKNOWN)
=	=			
	=			

<u>Practice 1</u>: Use the balanced equation for the combustion of butane. How many grams of oxygen are necessary to react completely with 217 grams of butane?

 $___C_4H_{10} + ___O_2 \rightarrow ___CO_2 + ___H_2O$

Molar Mass UNKNOWN: GIVEN:

UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	mol → g (UNKNOWN)
=	=			

<u>Practice 2</u>: Balance the following single replacement reaction.

 $\underline{\qquad} Fe + \underline{\qquad} H_2O \rightarrow \underline{\qquad} Fe_2O_3 + \underline{\qquad} H_2$

Molar Mass UNKNOWN: GIVEN:

How many grams of iron must react in order to produce 75.9 grams of iron (III) oxide?

UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	$mol \rightarrow g$ (UNKNOWN)
=				
=	:			

WHY DO REACTION	S STOP?				
e e		eat bags for Ms. Gillihan's 4 Blow-Pops, 4 Hershey's Kiss	e	5	0
Beta Club members are me inventory of supplies is ava		oon to assemble the treat bag	gs for the students in Ms.	Gillihan's class. Th	ne following
27 boxes of Sweet He 100 Hershey's Kisses 30 heart-shaped Vale	3	72]	watermelon Blow-Pops Hershey's Hugs pags with closures		
How many treat bags can be assembled? Why can't additional bags be put together?					
The	repre	esent the limiting reactant. A	All other items are	reactants.	
LIMITING REACTANT (LR):				
EXCESS REACTANT (XR):					
The balanced equation to the	ne right illustrate	es the synthesis of magnesiu	m hydroxide.	MgO + H ₂ C	$D \rightarrow Mg(OH)_2$
Interpret this equation in te	erms of moles.				
	in excess?	ich reactant will be used up The amount of mag nis substance then is the	nesium hydroxide that c	-	pends upon the
Balance the equation for the	e single replacem	nent reaction to the right.	KI +	$\Cl_2 \rightarrow _\k$	KCl + I ₂
Interpret this equation in te	erms of moles.				
When given mol KI and identify the limiting reacta		ctant.			
Compare moles AVAILAB AVAILABLE	LE (mol KI) to moles NEEDED (mol Cl ₂	The res	sult indicates the)
NEEDED	mol KI	mol Cl ₂	reactant. All other rea	actants are	reactants.

DETERMINING THE LIMITING REACTANT (GIVEN is moles)

<u>Practice 1</u>: Pilkington, a subsidiary of Nippon Sheet Glass Company, is one of the world's largest manufacturers of glass and glazing products. The main component of flat gas, used in windows and windshields, is silicon dioxide, also known as silica or silica sand. Silicon dioxide can be produced by reacting elemental silicon with water according to the following reaction.

 $_$ Si + $_$ H₂O \rightarrow $_$ SiO₂ + $_$ H₂

Balance the equation. What type of reaction is indicated by this equation?

Suppose that the reaction starts with 3.25 moles silicon and 3.25 moles water.

① Identify the limiting reactant. [Compare moles AVAILABLE to moles NEEDED.]

② Determine the mass of silicon dioxide that can be produced. [Use the limiting reactant as the GIVEN.]

③ Determine the amount (in moles) of the excess reactant that remains after the reaction stops. [*Use the amount of product formed in #2 above as the GIVEN.*]

DETERMINING THE LIMITING REACTANT (GIVEN is not moles)

Method: Determine how much product can be formed from the amounts given for each reactant. Two bridges are required, and the UNKNOWN for each bridge is the amount of product (in moles or grams, as appropriate).

Example: Write the balanced chemical equation for the synthesis of aluminum oxide from aluminum and oxygen. If the reaction is conducted with 7.50 g aluminum and 7.00 g oxygen, what are the limiting and the excess reactants? How much aluminum oxide will be produced?

UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	$ \begin{array}{c} mol \rightarrow g \\ (UNKNOWN) \end{array} $
=				

UNKNOWN	GIVEN	$GIVEN \qquad \qquad g \to mol (GIVEN)$	MOLE RATIO	$mol \rightarrow g$
				(UNKNOWN)
	=	=		

The reactant that forms the lesser amount of product is the ______ reactant (_____). The reactant that forms the greater amount of product is the ______. The reactant (______). The reactant that forms the greater amount of product formed is ______.

PERCENT YIELD

Defined:

THEORETICAL YIELD (TY):

ACTUAL YIELD (AY):

Formula for Percent Yield: % yield = _____ × 100

Example: Balance the following equation. What type of chemical reaction is taking place?

 $_$ Mg + $_$ HNO₃ \rightarrow $_$ Mg(NO₃)₂ + $_$ H₂

a. If the reaction begins with 40.0 grams magnesium and an excess of nitric acid, how many grams hydrogen will be produced?

UNKNOWN	GIVEN	$g \rightarrow mol (GIVEN)$	MOLE RATIO	mol → g (UNKNOWN)
=	=			

b. If 2.70 grams hydrogen is actually produced, what was the percent yield of hydrogen?

Practice Problem: Limiting Reactant and Percent Yield

Write the balanced chemical equation for the reaction of lead(II) nitrate with sodium iodide to form sodium nitrate and lead(II) iodide.

If the reaction starts with 25.0 grams of lead(II) nitrate and 25.0 grams of sodium iodide, how many grams of sodium nitrate will be produced?

- a. What is the limiting reactant?
- b. What is the excess reactant? How much of the excess reactant will be left over once the reaction stops?
- c. If 8.37 grams of sodium nitrate is actually produced, what is the percent yield for sodium nitrate?