Unit 1 Measurement

Scientific Methods

The scientific method refers to a \qquad approach to scientific investigation. There is
\qquad one process known as the scientific method.
A. \qquad

1. Use existing \qquad and \qquad
2. Qualitative data relates to the \qquad ; describes \qquad

- Examples:

3. Quantitative data involves \qquad - numbers with \qquad

- Examples:
B. \qquad

1. Tentative \qquad or \qquad based upon observations
2. Includes \qquad of results and \qquad
3. Two possible formats:

- If/then statement
- If: \qquad
\qquad
- Then: \qquad
\qquad
- May also include a \qquad to support prediction (\qquad _)
- Conditional statement
- Suggests \qquad
\qquad
- Reason \qquad
C. \qquad

1. An experiment is a set of controlled \qquad to test the hypothesis.
2. Only \qquad variable can be changed or manipulated at a time.
3. \qquad or manipulated variable is changed by the researcher. It may be the treatment applied or the \qquad and is graphed on the \qquad .
4. \qquad or responding variable changes in response. The value depends on the \qquad variable. It represents the \qquad and is graphed on the \qquad .
5. A \qquad is a factor that is not changed and that provides a basis or standard for
\qquad . An experiment may have control \qquad or \qquad
\qquad .

- Control groups \qquad .
- Controlled variables \qquad .
- If an experiment is testing the effectiveness of a new fertilizer, what would be held constant?

Example

Melissa believes that turtles eating Tasty Turtle Tidbits food will become smarter and will be able to navigate a maze faster than turtles eating regular Turtle Chow. She decides to perform an experiment to test her hypothesis. She has ten turtles navigate a maze and records the time it takes for each one to make it to the end. She feeds Tasty Turtle Tidbits to five turtles and Turtle Chow to five other turtles. After one week, she puts the turtles through the maze again and records the times for each.

1) What was Melissa's hypothesis?
2) Which fish are in the control group?
3) What is the independent variable?
4) What is the dependent variable?
**
Writing Activity: A medical research team is investigating how taking aspirin will affect the number of heart attacks in men over 50 years of age.

The control group takes a \qquad instead of aspirin. Why? \qquad

What are the manipulated and responding variables? \qquad

What other factors would need to be controlled? \qquad

Write a possible hypothesis for this investigation. \qquad

In a line graph for this investigation, how would the x - and y -axes be labeled? \qquad
\qquad
\qquad
**
D. \qquad

1. \qquad must be placed into meaningful context.
2. Involves performing \qquad and summarizing data from multiple \qquad .
3. Review, \qquad , and make sense of collected data.
4. Allows comparison of experimental results to the \qquad .
E. \qquad
5. A \qquad based on information obtained through experimentation
6. Data/results will \qquad or \qquad the hypothesis.
7. A written conclusion \qquad the results of the scientific process.

Hypotheses, Theories, and Laws

A. Hypothesis: supported by many \qquad
B. Theory: states a broad \qquad of \qquad supported by many experiments over time. A theory is considered successful if it can be used to make predictions that are
\qquad Example:
C. Scientific Law: describes a relationship in nature that is supported by multiple experiments with no
\qquad . Example:

Measurement

Mars Climate Orbiter: What would happen if measurements were expressed one way but interpreted in another?

Reliability of Measurements

A. Every measurement consists of two parts: 1) a \qquad followed by 2) a \qquad from the measuring tool.

- A measurement can only be as \qquad as the measuring tool used.
- The more \qquad in a measurement, the more \qquad it is.
- Example: \qquad
B. All \qquad possess a certain degree of \qquad .
C. Types of Error

1. \qquad error (\qquad) are due to mistakes in procedure by experimenter or instrument and can be \qquad —.
2. \qquad error is expected, has an \qquad chance of being high or being low, and is addressed by \qquad .
3. \qquad error or \qquad occurs in the same direction (always high or always low) and is usually to \qquad .
D. Propagation of error: \qquad

- Process begins with the experimenter making the measurement with a \qquad . - \qquad are indicated by markings on measuring tool.
- Space between markings gives one \qquad .
- Error is inherent in making measurements due to \qquad digits, and these errors subsequently affect \qquad .
E. The maximum possible \qquad for a measuring tool is defined as \qquad the smallest division marked on the tool. The uncertainty in the final digit of the measurement is assumed to be \qquad (known as the \qquad), unless otherwise noted.
- For rulers marked only by centimeters, the uncertainty in the last digit (estimated) is
\qquad . Therefore, the plus-or-minus amount is \qquad .
- For rulers with markings for millimeters in addition to centimeters, the plus-or-minus amount is
\qquad . This ruler is \qquad than the first.
 cm
- The length of the line is \qquad ; therefore, a known digit in the measurement is " \qquad $"$.
- The second digit must be \qquad because of the absence of markings.
- The length of the line can be measured as \qquad with an uncertainty of \qquad , meaning the length measurement ranges from \qquad .

Ruler B:
Marked by Millimeters
- The length of the line is \qquad ; therefore, a known digit in the measurement is " \qquad $"$.
- The second digit is between \qquad ; due to the millimeter markings, a second known digit in the measurement is " \qquad $"$.
- The third digit must be \qquad .
- The length of the line can be measured as \qquad with an uncertainty of \qquad , meaning the length measurement ranges from \qquad .

Reading Graduated Cylinders

A. To measure \qquad , use a graduated cylinder

- Make volume readings at \qquad with the graduated cylinder on a flat surface.
- View the curve or \qquad .
- Read the volume at the lowest point or \qquad .
B. Typically, the smaller the graduated cylinder, the greater the \qquad .
- The markings on the cylinder give the \qquad digits in the volume reading.
- Digits between markings are \qquad and will be \qquad the size of the smallest division.

$\mathbf{8 0}$
$E \mathbf{6 0}$
-40
$\mathbf{2 0}$

Cylinder A

Cylinder A is marked every \qquad . Numbers only appear every 20 mL but the \qquad divide the space evenly. The error or uncertainty is $1 / 10$ of the $10-\mathrm{mL}$ increment, making it \qquad .

The liquid level in this cylinder could be measured as \qquad , giving it a range of \qquad _.

Cylinder B is marked every \qquad . The error or uncertainty is $1 / 10$ of this increment, making it \qquad .

The liquid level in this cylinder could be measured as \qquad , giving it a range of \qquad _.

For Cylinder C, there are \qquad spaces between 20 mL and 21 mL ; it is marked every \qquad . The error or uncertainty is $1 / 10$ of this increment, making it \qquad .

The liquid level in this cylinder could be measured as \qquad , giving it a range of \qquad .

Reading Balances

A. Different types of balances differ in the \qquad of their readings.
B. Electronic balances display all \qquad digits and one \qquad digit on the read-out.
C. Triple beam balances have beams numbered for three place values: \qquad
\qquad . Four beam balances have an additional beam marked for the \qquad place value (one decimal place). In beam balances, the values for all beams are \qquad to attain the total mass.
D. Estimating a final digit gives measurements written to \qquad decimal places for triple beam balances and \qquad decimal places for four beam balances.

The hundreds digit is \qquad .
The tens digit is \qquad .

The ones digit is \qquad .
The tenths digit is \qquad .
The hundredths digit is \qquad .

The hundreds digit is \qquad .
The tens digit is \qquad .
The ones digit is \qquad .

The tenths digit is \qquad .
The hundredths digit is \qquad .
The thousandths digit is \qquad .

Standards of Measurement

A. Measurement involves using a \qquad to compare a specific dimension of an object to a \qquad .

1. Ancient Egyptians used the length of \qquad as the standard of measure.
2. What are some problems with this standard? \qquad
\qquad
B. In the 1790 s, during the French revolution, the \qquad was instituted as a standard system of measurement. A revision of this system began in 1948 and culminated in the publication of the \qquad (or SI system) in 1960.
C. The building blocks of SI are the standard \qquad for seven quantities, which are defined in terms of objects or events in the physical world, while \qquad are defined by combinations of the seven base units.
3. Time: \qquad (__)
4. Length: \qquad (\qquad _)
5. Mass: \qquad (\qquad
6. Temperature: \qquad (__)
7. Amount of a substance: \qquad (\qquad _)
a. \qquad items makes up one mole of that item
b. AKA \qquad Number
8. Electric current: \qquad (__
9. Luminous intensity: \qquad (__

Prefixes for SI Units

A. Prefixes are used to produce a \qquad of the original unit.

1. All multiples are \qquad .
2. Prefixes are used with the SI \qquad but are never combined. Prefixes may also be used with certain \qquad , which are considered acceptable for use with SI.
3. Multiples for mass are named as if the \qquad is the base unit.
B. Memory aid: \qquad

			base unit			
1,000	100	10	1	.01	.001	.0001
or						
10^{3}	10^{2}	10^{1}	10^{0}	10^{-1}	10^{-2}	10^{-3}

C. \qquad can be made between different prefixes, using the \qquad
\qquad between them.

1. Dimensional analysis: \qquad
\qquad
\qquad
2. \qquad express the relationships between two units for the same quantity.
$1 \mathrm{~kg}=$ \qquad g
$1 \mathrm{~g}=$ \qquad dg
$1 \mathrm{hg}=$ \qquad g
$1 \mathrm{~g}=$ \qquad cg
1 dag $=$ \qquad $1 \mathrm{~g}=$ \qquad mg
3. Short-cut conversions only work when \qquad .

Smaller \rightarrow Larger	Larger \rightarrow Smaller
by 10 for each increment	by 10 for each increment
Move the decimal point one place to the for each increment	Move the decimal point one place to the for each increment

Short-Cut Conversion Practice

1) $10 \mathrm{~m}=$ \qquad mm
2) $750 \mathrm{hs}=$ \qquad ks
3) $500 \mathrm{~g}=$ \qquad kg
4) $0.50 \mathrm{~kg}=$ \qquad mg
5) $75 \mathrm{cs}=$ \qquad s
6) $17.5 \mathrm{dm}=$ \qquad hm
7) $450 \mathrm{mg}=$ \qquad g
8) $32.5 \mathrm{dag}=$ \qquad
9) $25 \mathrm{dm}=$ \qquad dam
10) $25 \mathrm{~ms}=$ \qquad s

Dimensional Analysis

A. Dimensional analysis must be used when \qquad .
B. Dimensional analysis uses \qquad , which identify the relationship between two values with different units that express the same quantity. These factors provide \qquad
\qquad to go from the starting point to the ending point.

- Examples:
C. Conversion factors are \qquad and can be expressed as \qquad . Each fraction can be written in \qquad and always equals a value of \qquad .
- Example: If you have one dozen eggs, how many eggs do you have? \qquad . Therefore, \qquad . Written as fractions -
D. Dimensional analysis is a problem-solving method consisting of specific steps.

1. \qquad : identify (underline) the unknown in problem statement.
2. \qquad : identify (circle) the given in the problem statement.
3. \qquad : provides framework to get from start to finish.
4. \qquad : determined by applicable conversion factors.

Dimensional Analysis Practice

How many kilograms are in 150 lbs? What conversion factor(s) apply to this problem?
This conversion factor can be expressed as a fraction in two forms: \square
Write the \qquad , start with the \qquad , and then draw the \qquad to connect the two quantities.

Use dimensional analysis to solve the following problems.

1) How many seconds are in 22 days?
2) How many inches are in 127 miles?
3) How many calories are in 42 joules?

Volume

A. Volume: the \qquad occupied by a sample of matter

1. Derived unit for volume: \qquad (\qquad); \qquad
\qquad or \qquad) is more useful in chemistry

- $1 \mathrm{~m}^{3}=$ \qquad cm^{3}

2. Some non-SI units are accepted for use with SI units; for example, the \qquad (__ is still an accepted unit for liquid volume.

- $1 \mathrm{~L}=$ \qquad

3. For smaller quantities of liquids, volume is measured in \qquad (\qquad).

- $1 \mathrm{~cm}^{3}=1 \mathrm{cc}=$ \qquad mL
- $1 \mathrm{dm}^{3}=1 \mathrm{~L}=$ \qquad mL
C. Volume of \qquad Objects: solid objects with regular dimensions

1. For square/rectangular objects, $\mathrm{V}=$ (length)(width)(height)

- Calculate the volume of the cube:

2. For cylinders, $V=\pi$ (height)(radius), where $\pi=3.14$

- Calculate the volume of the cylinder:

D. Volume of \qquad Objects: solid objects with irregular shapes

1. Use the method called \qquad .
(1) Add water to a \qquad . Measure and record the volume.
(2) Add the \qquad to the cylinder. Measure and record the new volume.
(3) Use the initial and final volume readings to calculate the volume of the object.

- $\mathrm{V}_{\text {object }}=$
- A toy dinosaur placed in a graduated cylinder causes the water to rise from 4.80 mL to 5.60 mL . What is the volume of the rock? \qquad

Density

A. Density (D):
B. Formula
$\mathrm{D}=$
C. Using the Density Formula

1. Find the density of aluminum if a 13.5 g sample has a volume of $5.0 \mathrm{~cm}^{3}$.
2. Find the mass of a liquid if $10 . \mathrm{mL}$ have a density of $2.1 \mathrm{~g} / \mathrm{mL}$.
D. The density of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is \qquad or \qquad . Therefore, 1 mL of water has a mass of \qquad g , meaning, for water, \qquad (conversion factor).

- Given that the density of water can be expressed as $1 \mathrm{~g} / \mathrm{cm}^{3}$ or $1 \mathrm{~g} / \mathrm{mL}$, what can you say about the relationship between cm^{3} and mL ?

Temperature

A. Temperature defined: a measure of the average \qquad of particles of a substance
B. Used to compare the relative \qquad of objects or substances
C. Measure with a \qquad
D. The Celsius scale is a \qquad temperature scale based upon the freezing point
\qquad) and boiling point (\qquad) of water. The distance between these two points was divided into 100 equal units known as \qquad -.
E. The kelvin scale is an \qquad temperature scale devised by Lord Kelvin and based upon the temperature known as \qquad (the lowest possible temperature where all molecular motion stops). There are no \qquad temperature values on the kelvin scale.
F. Formula for conversion:

Conversion Practice

1) $100^{\circ} \mathrm{C}=$ \qquad K
2) $293 \mathrm{~K}=\square \quad{ }^{\circ} \mathrm{C}$
3) $0^{\circ} \mathrm{C}=$ \qquad K
4) $333 \mathrm{~K}=\square{ }^{\circ} \mathrm{C}$
5) $25^{\circ} \mathrm{C}=$ \qquad K
6) $303 \mathrm{~K}=\square \quad{ }^{\circ} \mathrm{C}$
7) $27^{\circ} \mathrm{C}=$ \qquad K
8) $223 \mathrm{~K}=$ \qquad

Representing Data

A. \qquad : a visual display of data that helps to reveal \qquad
B. A \qquad graph shows parts, often as percentages, of a fixed whole (100\%).
C. A \qquad graph shows how a quantity varies with specific factors.
D. A \qquad graph, the most useful in chemistry, consists of points representing the intersection of data for two variables: the independent on the \qquad -axis and the dependent on the \qquad -axis.

1. \qquad plot: points are plotted based upon the values for the independent and dependent variables
2. \qquad line: does not have to touch all data points; drawn with as many points above the line as below it
3. Straight line indicates a \qquad relationship.

- A \qquad slope (line rises to the right) indicates that the dependent variable
\qquad with an increase in the independent variable.
- A \qquad slope (line sinks to the right) indicates that the dependent variable
\qquad with an increase in the independent variable.
E. Creating a line graph requires specific steps.

1. General guidelines: \qquad
2. Calculate the \qquad for both the independent and dependent variables by taking the between the highest and lowest value for each. The \qquad is graphed on the longest side of the graph paper, determining whether to use the paper in the
3. Data collected for the independent variable usually appears in the \qquad column of the data table and is graphed on the \qquad . Data for the \qquad variable is in the righthand column of the data table and is graphed on the \qquad . Both axes should be labeled with the \qquad followed by the appropriate \qquad in parentheses.
4. The \qquad is the value represented by one box on the graph paper and can vary for each graph. The scale should be set as \qquad as possible based upon the size of the graph paper, but it usually equals \qquad . Scales for the x - and y -axes do not have to be the same.
5. Mark the \qquad on each axis evenly, such as every line or every other line. Both axes do not have to be marked the same, but each should be marked \qquad .

Increments are usually marked by \qquad and must make sense in terms of the \qquad .
6. Only one \qquad (upper right) of a graph is used and should be drawn to take up as much space on the graph paper as possible. Do not extend axes below or to the left of the origin and do not draw \qquad . The intersection of axes (\qquad) is the starting point for both axes, but it does not have to be \qquad and does not have to be the
\qquad for both axes.
7. Draw a \qquad representing the intersection of the x - and y -axes for each data value in the data table. The points must remain \qquad once the line is drawn but are only labeled with their \qquad if the labeling does not clutter the graph.
8. Unless otherwise instructed, all lines should be drawn as \qquad , which may be \qquad . Do not draw \qquad on the ends of lines.
9. The \qquad of the graph should be written toward the top of the graph in any available space; do not allow the title to obscure the lines in any way. The title should use the \qquad
\qquad for the x - and y -axes in the format \qquad
\qquad to show the dependence of the dependent variable on the independent variable.

Graphing Practice

A sample of gas was collected at $100^{\circ} \mathrm{C}$ and then cooled. Changes in volume were recorded in the following data table. Graph the data shown on the graph paper provided on the next page.

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Volume (mL)
100	315
80	300
60	290
40	280
30	250
20	245
10	240
0	235
-10	225
-30	200

Reliability of Measurements

A. Accuracy:
B. Precision:
C. The \qquad of experimental data must be evaluated. An \qquad is the difference between an experimental value and an \qquad value.
Error =
D. Percent error is a \qquad of an error to an accepted value.

$$
\text { Percent Error }=\frac{\text { Error }}{\text { Accepted Value }} \times 100=
$$

\square

Practice: Using the data in the table below, calculate the average percent error (use average data, not trial data) for the three groups if the accepted value for density is $1.60 \mathrm{~g} / \mathrm{cm}^{3}$.

Density Data	Group A $\left({\left.\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)}\right.$	Group B $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$	Group C $^{\mathbf{3}}$ $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$
Trial 1	1.54	1.40	1.70
Trial 2	1.60	1.68	1.69
Trial 3	1.57	1.45	1.71
Average	$\mathbf{1 . 5 7}$	$\mathbf{1 . 5 1}$	$\mathbf{1 . 7 0}$

Which group's data was most accurate (using averages)? Which group's data was most precise (using trial data)?

Significant Figures or Digits

A. The precision of measurements is limited by the \qquad and is indicated by the \qquad of digits reported; these digits are known as \qquad figures.
B. Significant figures include all \qquad digits plus one \qquad digit.
C. Rules for determining significant figures

1. Non-zero numbers are \qquad significant.
2. Zeros between non-zero numbers are \qquad significant.
3. All final zeros to the right of the decimal place \qquad significant.
4. Zeros that act as placeholders are \qquad significant.
5. Counting numbers and defined constants have an \qquad number of significant figures.

Practice How many significant figures are in each of the following measurements?
$\left.\begin{array}{lllll}38.15 \mathrm{~cm} \\ 72.050 \mathrm{~kg} & \square & 0.008 \mathrm{~mm} & \square & 50.8 \mathrm{~mm} \\ 25,000 \mathrm{~m} & \square & 200 . \mathrm{yr}\end{array}\right]$

Calculations with Significant Figures

A. Recall: propagation of uncertainty means \qquad
B. A calculated answer cannot be more \qquad than the measuring tool.
C. A calculated answer must match the \qquad precise measurement.
D. Addition and Subtraction

- The answer has the same number of decimal places as the measurement with the \qquad decimal places. For example, $2.51+3.064=$ \qquad .
E. Multiplication and Division
- Round result or add zeros to the calculated answer until it has the same number of significant figures as the measurement with the \qquad significant figures. For example, 3.50/2 $=$
\qquad .
- Rounding is reserved for the \qquad ; do not \qquad
for intermediate answers.

