Unit 1 Measurement

Scientific Methods The scientific method refers to a approach to scientific investigation. There is one process known as the scientific method. 1. Use existing _____ and ____ 2. Qualitative data relates to the _____; describes _____ • Examples: 3. Quantitative data involves ______ – numbers with _____ • Examples: 1. Tentative ______ or _____ based upon observations 2. Includes _____ of results and _____ 3. Two possible formats: • If/then statement May also include a ______ to support prediction (_____) Conditional statement o Suggests _____ o Reason _____ C. _____ 1. An experiment is a set of controlled ______ to test the hypothesis.

2.	Only	variable c	an be changed or ma	anipulated at a	time.					
3.	3 or manipulated variable is changed by the researche									
	the treatment appl	ied or the	_ and is graphed on	the	·					
4.		or respond	ling variable change	s in response.	The value depends					
	on the	var	iable. It represents th	ne	and is graphed					
	on the	·								
5.		is a factor that is not An experiment ma	_							
	Control group	s								
	Controlled var	riables								
	• If an experime	ent is testing the effective	eness of a new fertili	zer, what wou	ld be held constant?					
make i	it to the end. She fe	as ten turtles navigate a eds Tasty Turtle Tidbits the turtles through the many's hypothesis?	to five turtles and T	urtle Chow to	five other turtles.					
2)	Which fish are in	the control group?								
3)	What is the indepe	endent variable?								
4)	What is the depen	dent variable?								
****	*******	********	*******	******	*******					
	n g Activity: A med attacks in men over	ical research team is inv 50 years of age.	vestigating how takin	ıg aspirin will d	affect the number of					
The co	ontrol group takes a		_ instead of aspirin.	Why?						
What		and responding variable								

W1		other factors would need			
	rite		this investigation.		
				•	ed?
	***				*********
	1.		must be placed into r	neaningful context.	
	2.	Involves performing data from multiple			and summarizing
		Review,			
E.					
	1.	A	based on information	on obtained through	experimentation
	2.	Data/results will	or		the hypothesis.
	3.	A written conclusion		the results of t	the scientific process.
_		theses, Theories, and pothesis: supported by n			
В.	ove	eory: states a broader time. A theory is consi			ported by many experiments redictions that are
C.		ientific Law: describes a	_	nat is supported by m	nultiple experiments with no

Measurement

Mars Climate Orbiter: What would happen if measurements were expressed one way but interpreted in another?

Ke	lia	bility of Measurements											
A.	Ev	very measurement consists of two parts: 1) a	followed by 2) a	from the									
	me	easuring tool.											
	•	A measurement can only be as as the	ne measuring tool used.										
	•	The more in a measurement, th	e more it is.										
		o Example:											
B.	All	l possess a certain d	egree of	·									
C.	Ту	Types of Error											
	1.	error () are due to mistakes in procedure	by									
		experimenter or instrument and can be											
	2.	error is expected, has an	chance of being high or l	being low, and									
		is addressed by											
	3.	error or occurs in the	same direction (always high or al	lways low)									
		and is usually to											
D.	Pro	opagation of error:											
	•	Process begins with the experimenter making the r	neasurement with a										
		o are indicated	by markings on measuring tool.										
		Space between markings gives one											
	•	Error is inherent in making measurements due to _	digits, and t	hese errors									
		subsequently affect	_										
E.	Th	ne maximum possible for a measu											
		e smallest division marked on the tool. The uncertain											
		sumed to be (known as the											
	•	For rulers marked only by centimeters, the uncerta											
		Therefore, the plus-											
	•	For rulers with markings for millimeters in additio											
	-	This	_										
		. 1111		11101.									

1	² ³ ⁴	cm	Ruler A: Marked by Centimeters
•	The length of the line is		•
	the measurement is "".		
•	The second digit must be	because of the a	absence of markings.
•	The length of the line can be measured as		
	meaning the length measurement ranges from		•
1		cm	Ruler B: Marked by Millimeters
•	The length of the line is		; therefore, a known digit in
	the measurement is "".		
•	The second digit is between	; due t	to the millimeter markings, a
	second known digit in the measurement is "		
•	The third digit must be	_•	
•	The length of the line can be measured as	with ar	n uncertainty of,
	meaning the length measurement ranges from	I	·
	ling Graduated Cylinders		
A. To	o measure, use a		
•	Make volume readings at	with the gradua	ted cylinder on a flat surface.
•	View the curve or		
•	Read the volume at the lowest point or		
B. T	ypically, the smaller the graduated cylinder, the	greater the	
.			
•	The markings on the cylinder give the	digits in th	ne volume reading.
•	Digits between markings are	and will be	the size of the smallest
	division.		
Γ	Cylinder A is marked every		
	uncertainty is 1/10 of the 10-mL		-
	40	_	
	Cylinder A a range of		as, giving it

	Cylind increm				•			Tl	ne err	or or u	ncertainty is 1/10 of this
	The lical	-			•				ured	as	, giving it Cylinder B
	21 20 ylinder	n n	narked naking The liq	l every g it uid le	y vel in	_· this c	ylinde	The e	error o	or unce	etween 20 mL and 21 mL; it is retainty is 1/10 of this increment, red as, giving it
	ling B			alance	es diff	er in t	he				of their readings.
		• -									digit on the read-out.
											values:
											narked for the place
											ıll beams are
	attain			-				,			
D. Es	stimati	ng a f	inal d	igit gi	ves m	easur	ement	s writ	ten to)	decimal places for triple beam
		_								balance	
						r					undreds digit is
	0 1	0 20	30	40	50	60	70 8	0 90	1		ns digit is
		_,===				7		والمساور والمساور			nes digit is
	0		100	200		000	400		500 g	The te	nths digit is
in in	minimi	nujin	lingined	majimi	A MARINE	nalarahi D	njajan	щищи	PSP25-2000001722000	The hu	undredths digit is
					5	Ь		8	9		g
											The hundreds digit is
ě	10	20	30	40	50	60	70	80	90	100	The hundreds digit is The tens digit is
0	166	200	300	400	500	600	789	800	900	1999	The ones digit is
e	րուրուդ 1	11111111111111111111111111111111111111	1000/000 3	4	11111111111111111111111111111111111111	11111111111111111111111111111111111111	7 7	a land	dinidii dinidii	19	The tenths digit is
IIII	hindrad		C-151122111	10.000	10.00	punjur		700	dende		The hundredths digit is
0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	The thousandths digit is

_ g

		rds of Measurement	
A.		et to a	to compare a specific dimension of an
	_		as the standard of measure.
	2. V	-	lard?
В.	In the		the was instituted as a
			n of this system began in 1948 and culminated in the (or SI system) in 1960.
C.	The l	building blocks of SI are the standard _	for seven quantities, which are
		ned in terms of objects or events in the ned by combinations of the seven base	physical world, while are units.
	1. T	Cime: ()	
	2. L	Length: ()	
	3. N	Mass:()	
	4. T	Cemperature:(_)
	5. A	Amount of a substance:	()
		items mak	
	6. E	Electric current:	()
	7. L	Luminous intensity:	()
		es for SI Units xes are used to produce a	of the original unit.
	1. A	All multiples are	
	n		but are never combined. Prefixes, which are considered acceptable for
	3 N	Aultiples for mass are named as if the	is the base unit.

B. Memory aid:

				base unit			
ſ	1,000	100	10	1	.01	.001	.0001
	$\frac{\text{or}}{10^3}$	or 10 ²	or 10 ¹	or 10 ⁰	or 10 ⁻¹	or 10 ⁻²	or 10 ⁻³

C. _____ can be made between different prefixes, using the ____

between them.

1. Dimensional analysis: _____

2. ______ express the relationships between two units for the same quantity.

$$1 g = \underline{\hspace{1cm}} cg$$

3. Short-cut conversions only work when _____

Smaller → Larger	Larger → Smaller	
by 10 for each increment	by 10 for each increment	
Move the decimal point one place to the	Move the decimal point one place to the	
for each increment	for each increment	

Short-Cut Conversion Practice

6)
$$750 \text{ hs} =$$
____ks

2)
$$500 g =$$
____kg

7)
$$0.50 \text{ kg} = \underline{\hspace{1cm}} \text{mg}$$

3)
$$75 \text{ cs} =$$
_____s

8)
$$17.5 \text{ dm} =$$
_____hm

Dimensional Analysis

A. Dimensional analysis must be used when _____

В.	Dimensional analysis uses, which identify the relationship between								
	two values with different units that express the same quantity. These factors provide								
	to go from the starting point to the ending point.								
	• Examples:								
C.	Conversion factors are and can be expressed as Each fraction can be								
	written in and always equals a value of								
	• Example: If you have one dozen eggs, how many eggs do you have?								
	Therefore, Written as fractions —								
D.	Dimensional analysis is a problem-solving method consisting of specific steps.								
	1: identify (underline) the unknown in problem statement.								
	2: identify (circle) the given in the problem statement.								
	3: provides framework to get from start to finish.								
	4: determined by applicable conversion factors.								
Di	mensional Analysis Practice								
	ow many kilograms are in 150 lbs? What conversion factor(s) apply to this problem?								
Th	is conversion factor can be expressed as a fraction in two forms:								
	rite the, start with the, and then draw the to connect the two antities.								
Us	te dimensional analysis to solve the following problems.								
	1) How many seconds are in 22 days?								
	2) How many inches are in 127 miles?								
	3) How many calories are in 42 joules?								

Volume

- A. Volume: the ______ occupied by a sample of matter
 - 1. Derived unit for volume: _____ (____); _____

(_____ or _____) is more useful in chemistry

- $1 \text{ m}^3 = \underline{\qquad} \text{ cm}^3$
- 2. Some non-SI units are accepted for use with SI units; for example, the ______(____) is still an accepted unit for liquid volume.
 - 1 L = _____
- 3. For smaller quantities of liquids, volume is measured in _____ (____).
 - $1 \text{ cm}^3 = 1 \text{ cc} = \underline{\hspace{1cm}} \text{mL}$
 - $1 \text{ dm}^3 = 1 \text{ L} = \underline{\qquad} \text{ mL}$
- C. Volume of _____ Objects: solid objects with regular dimensions

- 1. For square/rectangular objects, V = (length)(width)(height)
 - Calculate the volume of the cube:
- 2. For cylinders, $V = \pi(height)(radius)$, where $\pi = 3.14$
 - Calculate the volume of the cylinder:

- D. Volume of _____ Objects: solid objects with irregular shapes
 - 1. Use the method called _______.
 - ① Add water to a _____. Measure and record the volume.
 - ② Add the ______ to the cylinder. Measure and record the new volume.
 - 3 Use the initial and final volume readings to calculate the volume of the object.
 - \bullet $V_{object} =$
 - A toy dinosaur placed in a graduated cylinder causes the water to rise from 4.80 mL to
 5.60 mL. What is the volume of the rock?

Density

A. Density (D): _____

B. Formula

D =

- C. Using the Density Formula
 - 1. Find the density of aluminum if a 13.5 g sample has a volume of 5.0 cm³.
 - 2. Find the mass of a liquid if 10. mL have a density of 2.1 g/mL.
- D. The density of water (H_2O) is _____ or ____. Therefore, 1 mL of water has a mass of _____ g, meaning, for water, _____ (conversion factor).
 - Given that the density of water can be expressed as 1 g/cm³ or 1 g/mL, what can you say about the relationship between cm³ and mL?

Temperature

- A. Temperature defined: a measure of the average ______ of particles of a substance
- B. Used to compare the relative ______ of objects or substances
- C. Measure with a _____
- D. The Celsius scale is a _______ temperature scale based upon the freezing point (______) and boiling point (______) of water. The distance between these two points was divided into 100 equal units known as _______.
- E. The kelvin scale is an ______ temperature scale devised by Lord Kelvin and based upon the temperature known as ______ (the lowest possible temperature where all molecular motion stops). There are no ______ temperature values on the kelvin scale.
- F. Formula for conversion:

Conversion Practice

Representing Data A. _____: a visual display of data that helps to reveal _____ B. A _____ graph shows parts, often as percentages, of a fixed whole (100%). C. A _____ graph shows how a quantity varies with specific factors. D. A _____ graph, the most useful in chemistry, consists of points representing the intersection of data for two variables: the independent on the _____-axis and the dependent on the _____-axis. 1. plot: points are plotted based upon the values for the independent and dependent variables 2. _____ line: does not have to touch all data points; drawn with as many points above the line as below it 3. Straight line indicates a ______ relationship. • A slope (line rises to the right) indicates that the dependent variable with an increase in the independent variable. • A _____ slope (line sinks to the right) indicates that the dependent variable ____ with an increase in the independent variable. E. Creating a line graph requires specific steps. 1. General guidelines: 2. Calculate the _____ for both the independent and dependent variables by taking the _____ between the highest and lowest value for each. The _____ is graphed on the longest side of the graph paper, determining whether to use the paper in the 3. Data collected for the independent variable usually appears in the _____ column of the data table and is graphed on the ______. Data for the _____ variable is in the righthand column of the data table and is graphed on the _____. Both axes should be labeled with the _____ followed by the appropriate _____ in parentheses. 4. The ______ is the value represented by one box on the graph paper and can vary for each graph. The scale should be set as as possible based upon the size of the graph paper, but it usually equals ______. Scales for the x- and y-axes do

not have to be the same.

5.	Mark the on each axis evenly, such as every line or every other line. Both
	axes do not have to be marked the same, but each should be marked
	Increments are usually marked by and must make sense in
	terms of the
6.	Only one (upper right) of a graph is used and should be drawn to take up
	as much space on the graph paper as possible. Do not extend axes below or to the left of the
	origin and do not draw The intersection of axes () is the
	starting point for both axes, but it does not have to be and does not have to be the
	for both axes.
7.	Draw a representing the intersection of the x- and y-axes for each data value in the
	data table. The points must remain once the line is drawn but are only labeled
	with their if the labeling does not clutter the graph.
8.	Unless otherwise instructed, all lines should be drawn as, which
	may be on the ends of lines.
9.	The of the graph should be written toward the top of the graph in any available
	space; do not allow the title to obscure the lines in any way. The title should use the
	for the x- and y-axes in the format
	to show the dependence of the dependent variable on the
	independent variable.

Graphing Practice

A sample of gas was collected at 100°C and then cooled. Changes in volume were recorded in the following data table. Graph the data shown on the graph paper provided on the next page.

Temperature (°C)	Volume (mL)
100	315
80	300
60	290
40	280
30	250
20	245
10	240
0	235
-10	225
-30	200

Reliability of Measurements

- A. Accuracy:
- B. Precision:

C.	The	of experimental data must	be evaluated. An	is the difference
	between an experiment	al value and an	value.	
	Error =			

D. Percent error is a ______ of an error to an accepted value.

Percent Error = _	Error	X	100 =
	Accepted Value		

Practice: Using the data in the table below, calculate the average percent error (use average data, not trial data) for the three groups if the accepted value for density is 1.60 g/cm^3 .

Density Data	Group A (g/cm ³)	Group B (g/cm ³)	Group C (g/cm ³)
Trial 1	1.54	1.40	1.70
Trial 2	1.60	1.68	1.69
Trial 3	1.57	1.45	1.71
Average	1.57	1.51	1.70

Which group's data was most accurate (using averages)? Which group's data was most precise (using trial data)?

		icant Figures	_	ted by the		and is inc	licated			
11.		fig								
D				digits plus one			guics.			
	_	_			·	digit.				
C.			ng significant figur							
	1. Non-zero numbers are significant.									
	2. Zeros between non-zero numbers are significant.									
	3. All final zeros to the right of the decimal place significant.4. Zeros that act as placeholders are significant.									
			_	_		1 (' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '				
	5.	Counting number	ers and defined coi	nstants have an	num	ber of significant fig	ures.			
		PACIFIC	1	The same	AT	LANTIC				
		Decimal Present			Deci	mal A bsent				
	_		E							
	L		1	THE	, <					
_		0.033405800	M	and the same	3	3007:0				
		SF		()	_	SF				
Pr	actic	How many s 38.15 cm		are in each of the fo	•	ements?				
		72.050 k	g	25,000 m	20	0. yr				
		ations with Signi call: propagation		ans						
В.	A c	alculated answer	cannot be more _	tl	nan the measurin	ng tool.				
C.	A c	alculated answer	must match the _	preci	se measurement					
D.	Ado	dition and Subtra	ection	-						
	•	The answer has	the same number of	of decimal places as	the measureme	nt with the				
				+ 3.064 =						
F		_	_	3.001 –	•					
ட.	 Multiplication and Division Round result or add zeros to the calculated answer until it has the same number of significant 									
		rigures as the me	zasurement with th	ie Si	giiiicant figures	s. For example, 3.50/	<i>L</i> =			
	•	Rounding is rese	erved for the		; do not					

for intermediate answers.