Metric Conversions

1) 4.09 meters to centimeters \qquad
2) 455,500 centimeters to meters \qquad
3) 7.49 meters to millimeters \qquad
4) $3,198,400$ millimeters to meters \qquad
5) 38.77 kilometers to meters \qquad
6) 4,731 meters to kilometers \qquad
7) 13.33 centimeters to millimeters \qquad
8) 3,509 millimeters to centimeters \qquad
9) 5.39 kilometers to centimeters \qquad
10) 76,080 centimeters to kilometers \qquad
11) 2,416 milligrams to grams \qquad
12) 5.91 kilograms to grams \qquad
13) 98,700 grams to kilograms \qquad
14) 57.59 kilograms to milligrams \qquad
15) 4.52 kilometers to millimeters \qquad
16) 88,680 millimeters to kilometers \qquad
17) 64.68 liters to milliliters \qquad
18) 227,500 milliliters to liters \qquad
19) 17.59 grams to milligrams \qquad
20) 63,200 milligrams to kilograms \qquad

Counting Significant Figures

1) 3701
2) $7.90 \times 10^{9}=$
3) $2.200 \times 10^{-1}=\square$
4) 52.44
5) 8.600×10^{-2}

Adding and Subtracting (Significant Figures)

1) $7.6-5.4451$
$=$ \qquad 3) $7.6614+3.79$
$=$
2) $11.8-5.66$
$=$ \qquad

Multiplying and Dividing (Significant Figures)

1) 17×0.7
2) $1000 \div 25.980$
3) $307 \div 3.248$
$=$ \qquad
$=$
4) 4.955×2
5) 0.008×7.924
\qquad
6) 80×1.1
$=$ $-$

-

Density

1. What is the density of a rock with a volume of $15 \mathrm{~cm}^{3}$ and a mass of 45 g ?
2. You decide that you want to carry a boulder home from the beach. The boulder has a volume of 27,000 cm^{3}. It is made of granite, which has a typical density of $2.8 \mathrm{~g} / \mathrm{cm}^{3}$. How much mass does this boulder have? Express the answer in scientific notation.
3. Basalt rocks are sometimes used along coasts to prevent erosion. If a rock must have a mass of $2.0 \times 10^{6} \mathrm{~g}$ in order to not be shifted by waves, what volume must it be? Basalt has a density of $3.20 \mathrm{~g} / \mathrm{cm}^{3}$.
4. A golden-colored cube is handed to you. The person wants you to buy it for $\$ 100$, saying that it is a nugget of pure gold. You pull out an old textbook, look up gold in the mineral table, and read that its density is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. You measure the cube and find that it is 2 cm on each side and has a mass of 40.0 g . What is the density of the cube? Is it made of gold? Should you buy it?

Accuracy and Precision

For an important chemistry lab, you must measure an object, using the method of water displacement, in order to calculate its density. You conduct three measurement trials and collect the data as indicated below.

	Mass of Object	Initial Volume in Graduated Cylinder	Final Volume in Graduated Cylinder	Volume of Object	Density of Object
Trial 1	35.0 g	25.00 mL	28.15 mL		
Trial 2	62.5 g	85.00 mL	91.00 mL		
Trial 3	22.7 g	47.95 mL	49.85 mL		
Average	$* * * * * * * * * * * * *$	$* * * * * * * * * * * * * *$	$* * * * * * * * * * * * *$	$* * * * * * * * * * * * *$	

1. Calculate the volume of the object for each trial and fill it in the data table.
2. Calculate the density for each trial and fill it in the data table.
3. Average the density results for all three trials and fill it in the data table.
4. The accepted density for the object is $11.3 \mathrm{~g} / \mathrm{cm}^{3}$. Are your density calculations precise?
5. Is your average density accurate?
6. Calculate your percent error using your average density as the experimental value.
