Bohr's Energy Levels

- Electrons in \qquad
\qquad
\qquad energy levels: \qquad to \qquad
\qquad energy levels: \qquad from \qquad
- Ground State: \qquad in \qquad possible

Excited Atom

- Atom has \qquad
\qquad .
\qquad state is \qquad .
- \qquad same amount of \qquad
- \qquad seen as \qquad .
The Modern View of Light
\qquad
has a .
- Light may \qquad as a \qquad
- Light may \qquad as a \qquad of \qquad called
\qquad or \qquad

Spectroscopy

- \qquad lines represent \qquad as \qquad returns to \qquad
- ___ lines \qquad an \qquad .
- Called the \qquad of an \qquad .

Orbital
\qquad of \qquad where an \qquad is \qquad to be
\qquad
Fill in the blanks with the most appropriate term:
In Bohr's model of the atom, electrons are in certain \qquad levels, with the levels closest to the nucleus of \qquad energy than those farther from the nucleus. In the \qquad state of the atom, the electrons are in the lowest \qquad level possible. When an atom absorbs energy, it is said to be in the \qquad state, which is unstable. The atom will soon \qquad the same amount of energy absorbed which may be seen as visible light. In the study of \qquad , this visible light is seen as the \qquad spectrum of an element, which is also called an element's "fingerprints".

The modern view of light is that it has a \qquad nature. In other words, light may behave as a stream of particles called \qquad or
\qquad or light may behave as a \qquad . Modern scientists suggest that the nature of light depends on the experiment!

Quantum Numbers

-
- Used to \qquad an \qquad in an \qquad

\underline{n}

-
- Represents \qquad energy level of \qquad
\qquad \# of \qquad in an
\qquad $=$ \qquad
Example: What is the maximum number of electrons that can be in the
\qquad main energy level?
l
- The \qquad
- Describes the \qquad within an \qquad
- \qquad possible in \qquad
\square $=$ \qquad
Orbital Shapes
designated
- level 1: \qquad
- level 2: \qquad
- level 3: \qquad
- level 4: \qquad
How many electrons can each sublevel hold?
$s=1$ orbital $\times 2 e^{-} /$orbital $=$ \qquad
$p=3$ orbitals $\times 2 e^{-} /$orbital $=$ \qquad
$d=5$ orbitals $\times 2 e^{-}$/orbital $=$
$f=7$ orbitals $\times 2 e^{-} /$orbital $=$
\underline{m}
- The \qquad
- describes \qquad of \qquad in \qquad
\underline{S}
- The \qquad
- describes \qquad of \qquad in \qquad

Ground State: \qquad energy arrangement of \qquad
Examples-
hydrogen \qquad lithium
nitrogen \qquad

Orbital Notation

Examples-
hydrogen
nitrogen

Hund's Rule:

\qquad of \qquad are each \qquad by one
\qquad before any \qquad is occupied by a \qquad

Pauli Exclusion Principle:

No two \qquad in the \qquad can have the \qquad
\qquad of

\qquad

1. There are four types of orbitals:
s: shaped like a \qquad
An E level can contain only \qquad s orbital, making up the "s sublevel".
p: shaped like \qquad p orbitals, making up the "p sublevel".
d: shaped like double dumbbells
An E level can contain \qquad d orbitals, making up the "d sublevel".
f : too complex to draw or describe
An E level can contain \qquad f orbitals, making up the " f sublevel".
2. Each orbital can hold a maximum of \qquad electrons. Since both electrons have a \qquad charge, they \qquad . What keeps them from
flying apart?
Each electron \qquad on its axis. One spins \qquad and the other spins \qquad . When charged particles spin, they act like tiny magnets. Since the two electrons spin
in \qquad directions, one acts like the north pole of a magnet and the other acts like the south pole. This makes the electrons
\qquad .
3. Since each orbital can hold \qquad electrons:
The "s sublevel" can hold \qquad electrons.
The "p sublevel" can hold \qquad electrons.
The "d sublevel" can hold \qquad electrons.
The " f sublevel" can hold \qquad electrons.

We use this notation to describe an electron:

\qquad

How are electrons distributed within a sublevel?
According to Hund's Rule, each \qquad within a sublevel is half-filled before any is \qquad .

We draw orbital diagrams to show the distribution of electrons in a sublevel. Circles are used to represent the individual \qquad . \qquad are used to represent electrons in the orbital. The first electron in an orbital is represented by $a \uparrow$ and the second by $a \downarrow$.

A set of four \qquad numbers is assigned to each \qquad to describe its energy and location within the atom. The quantum numbers use the symbols \qquad , \qquad , and \qquad _.
\qquad is the principle quantum number and represents the \qquad level of the electron.
\qquad represents the sublevel of the electron, which depends on the type of
\qquad .

Pauli's Exclusion Principle states that within an atom, no two electrons can have the same set of \qquad
\qquad . If two electrons have the same n, I, and m numbers, they are in the same \qquad level, the same
\qquad and the same \qquad . They must then have spins! So, the s quantum numbers must be different.

Practice: Write electron distributions and do the orbital notation for the following:

1. P :
2. Ca :

Only do the electron distributions for the following:

1. Co:
2. Eu:
3. $T c$:

I. Fill in the blanks:

1. The orbital shaped like a "dumb-bell" is the \qquad orbital, while the orbital shaped spherically is the \qquad orbital.
2. How many sublevels are present in the third main energy level? \qquad
3. What is the maximum number of orbitals in the "d" sublevel? \qquad
4. The maximum number of electrons that can occupy an orbital is \qquad , provided they have \qquad
\qquad .
5. The maximum number of electrons that can occupy an energy level is represented by the formula \qquad .
6. The highly probable location of an electron within the atom is $a(n)$ \qquad .
II. Write the electron configuration for the following:
7. Mg : \qquad
8. As: \qquad
III. In the space below, show the orbital notation for Mg :
\qquad

Nucleons- \qquad in the \qquad of \qquad
\qquad
-
Atomic Number- \qquad of \qquad in the \qquad of an

Neutral atom- \# of \qquad $(+)=\#$ of \qquad
Isotope- \qquad of an \qquad that have \qquad of \qquad .

Isotopes of Hydrogen

Hydrogen-1
\qquad proton and \qquad neutrons
Hydrogen-2
proton and \qquad neutrons
Hydrogen-3

- \qquad proton and \qquad neutrons

Mass Number- \qquad number of \qquad and \qquad in an -.

Example: Carbon-14 \qquad Neon-20 \qquad

Particle	Charge	Mass	Location
Proton			
Neutron			
Electron			

Atomic Mass- \qquad of the \qquad of all the element's \qquad

CHEMISTRY: A Study of Matter

