Nuclear Chemistry

Characteristics of Chemical and Nuclear Reactions				
Chemical Reactions	Nuclear Reactions			
Occur when <u>chemical bonds</u> are broken and formed.	Occur when nuclei emit <u>particles</u> and/or <u>rays</u> .			
Atoms remain unchanged, though they may be <u>rearranged</u> .	Atoms are often <u>converted</u> into atoms of another element.			
Involve only <u>valence electrons</u> or the outermost electrons.	May involve <u>protons</u> , <u>neutrons</u> , and <u>electrons</u> .			
Associate with <u>small</u> energy changes.	Associated with <u>large</u> energy changes.			
Reaction <u>rate</u> is influenced by temperature, pressure, concentration, and catalysts.	Reaction rate is <u>not</u> affected by temperature, pressure, or catalysts.			

Radioactivity and Radiation

Radiation	or	radioactive	decay	is the process by
which some substances	spontan	eously emit radioactive rays	and particles. Ra	dioactive isotopes
(atomic number > <u>83</u>	<u>)</u> have	e unstable <u>nucleí</u> and o	decay spontaneo	usly. Other nuclei
are unstable because of	toor	nany neutrons An uns	table nucleus de	cays to become
more stable, resulting in	n:			

- 1) Release of tremendous amount of energy, and
- 2) Atom forming a new element

Types of Radiation and Decay

Types of Radiation						
Туре	Emission	Composition	Symbol	Charge	Mass	Penetrating Power
Alpha decay	alpha partícle	twop⁺ and twon⁰ (He nucleus)	4 He 2	2*	4 amu	paper
Beta decay	beta partícle	fast-moving electron	0 ß -1	1-	0 amu	metal foil
Gamma emission	gamma ray	hígh energy photons	ο γ ο	0	0 amu	lead, concrete

1. Unstable nuclei with more than 83 protons undergo <u>alpha</u> <u>decay</u>, emit an <u>alpha</u> <u>particle</u>, and decrease the number of <u>protons and neutrons</u>.

Example: Nuclear equation for the alpha decay of radioactive radium-226 to radon-222:

$$\begin{array}{ccc} 226 & 222 \\ Ra & \rightarrow & Rn \\ 88 & 86 \end{array} + \begin{array}{c} 4 \\ He \\ 2 \end{array}$$
radium-226 radon-222 alpha particle

2. Radioisotopes with too many <u>neutrons</u> undergo <u>beta</u> <u>decay</u>, emit an <u>beta</u> <u>particle</u>, and decrease the number of <u>neutrons</u>.

Example: Nuclear equation for the beta decay of carbon-14 into nitrogen-14:

carbon-14 nitrogen-14 beta particle

3. Gamma emission involves releasing <u>gamma</u> <u>rays</u> but does not create new <u>atoms</u> alone.

Example: Gamma rays accompany alpha and beta decay processes:

²⁴¹ Am - ₉₅	$\rightarrow Np + \frac{237}{93}$	⁴ ₂ He	+	$\begin{array}{c} O \\ \gamma \\ O \end{array}$
americium-241	neptunium-237	alpha particle		gamma ray

Balancing Nuclear Equations

Nuclear <u>equations</u> are written to express nuclear reactions. Isotopic notation is used to show that <u>atomic</u> numbers and <u>mass</u> numbers of the involved particles are conserved.

- 1. Balance the number of nucleons (<u>protons and neutrons</u>) using mass number.
- 2. Balance the charge using atomic number.
- 3. Determine the decay product (<u>alpha or beta particles</u>) and write the balanced equation.

Example 1. Write a balanced equation for the decay of uranium-238 to thorium-234.

Example 2. Write a balanced equation for the decay of potassium-43 to calcium-43.

Practice Set 1. Write the balanced equation for the following nuclear reactions.

1. Uranium-233 undergoes alpha decay

 $\mathcal{U}_{92}^{233} \mathcal{U} \rightarrow \mathcal{H}_{2}^{4} \mathcal{H}_{2} \mathcal{H}_{90}^{229} \mathcal{T}_{1} \mathcal{H}_{90}^{229}$

2. Copper-63 undergoes beta decay

$$\int_{29}^{63} Cw \rightarrow \int_{-1}^{0} \beta + \int_{30}^{63} Zw$$

3. Beryllium-9 and an alpha particle combine to form carbon-13

°Be	+	⁴He∕	\rightarrow	¹³ C
4		2		6

4. Phosphorus-32 and a neutron combine to form phosphorous-33

$$\overset{32}{\underset{15}{\mathcal{P}}} + \overset{1}{\underset{0}{\mathcal{W}}} \to \overset{33}{\underset{15}{\mathcal{P}}}$$

Practice Set 2. Balance the following nuclear equations.

1.	$^{208}_{82}$ Pb \rightarrow	⁴ ₂ He	+	204 Hg- 80
2.	$^{210}_{82}$ Pb \rightarrow	ο β	+	210 Bi 83
3.	$Ra \rightarrow Ra \rightarrow Ra$	⁴ ₂ He	+	222 Th 90
4.	$\overset{60}{\text{Co}}$ \rightarrow $\overset{27}{\rightarrow}$	$^{0}_{-1}\beta$	+	60 Ni 28

Nuclear Fission

In nuclear fission, the heavy nucleus of an atom is bombarded by a <u>neutron</u> and splits into <u>two smaller nuclei</u>. The new isotopes formed emit <u>a neutron</u>, which can be used to split other nuclei. This process continues forming a <u>chain</u> <u>reaction</u>. The explosion from an atomic bomb results from an <u>uncontrolled</u> chain reaction.

Nuclear Fusion

The process by which two small nuclei combine to form a larger, more stable nucleus is nuclear <u>fusion</u>. Nuclear fusion releases more energy than nuclear <u>fission</u>, but extremely high energies and temperatures are required to initiate and sustain fusion reactions. The

<u>sur and stars</u> are powered by fusion reactions. All elements heavier than <u>He</u> are formed through nuclear fusion.

Half-Life

Radiochemical <u>dating</u> is the process of determining the age of an object by measuring the amount of a certain radioisotope that remains. This process is possible because the decay rates of radioactive nuclei are <u>constant</u> and are referred to as the <u>half-life</u> of the radioisotope.

Half-life defined: the average time required for one-half of a radioactive isotope to decay into more stable isotopes

<u>*Carbon-14*</u> is used in radioactive dating for specimens that are less than 20,000 years old and were once living. *Potassium-40* has been used to date ancient rocks and minerals.

Half-Life Problems

Half-life problems may be solved using a mathematical formula or a step-by-step table.

Two formulas:

s: Amt remaining = $(initial amt)(1/2)^n$

where n = number of half-lives passed

Amt remaining = $(initial amt)(1/2)^{t/T}$

where t = elapsed time and T = duration of half-life

Example: The half-life of strontium-90 is 29 years. If you had 100. g today, how much Sr-90

would remain in 116 years? (t = <u>116 years</u> and T = <u>29 years</u>)

How many half-lives (n) will have passed in 116 years? 4 half-lives

29 years \rightarrow 58 years \rightarrow 87 years \rightarrow 116 years

Amt remaining = $(100, g)(1/2)^{116/29} = (100, g)(1/2)^4$

Amt remaining = 6.25 g

# of Half-lives	Time Passed	Amount Remaining
0	0 years	100. g
1	29 years	50.0 g
2	58 years	25.0 g
3	87 years	12.5 g
4	116 years	6.25 g