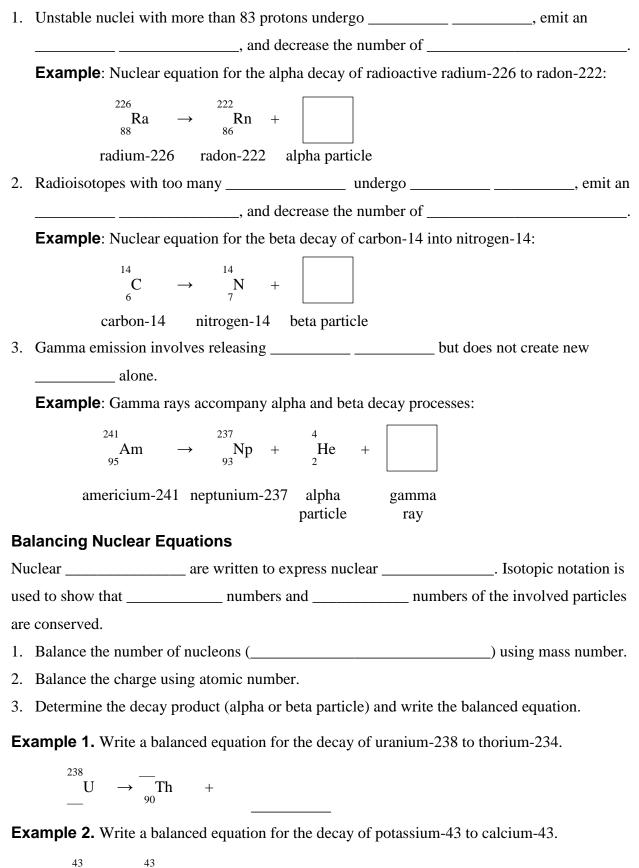
Nuclear Chemistry


Characteristics of Chemical and Nuclear Reactions			
Chemical Reactions	Nuclear Reactions		
Occur whenare broken and formed.	Occur when nuclei emit		
Atoms remain unchanged, though they may be	Atoms are often into atoms of another element.		
Involve only or the outermost electrons.	May involve,,,,,		
Associate with energy changes.	Associated with energy changes.		
Reaction is influenced by temperature, pressure, concentration, and catalysts.	Reaction rate is affected by temperature, pressure, or catalysts.		

Radioactivity and Radiation

or	is the process by
which some substances spontaneously emit radioactive rays	and particles. Radioactive isotopes
(atomic number >) have unstable	_ and decay spontaneously. Other
nuclei are unstable because of	An unstable
nucleus decays to become more stable, resulting in:	
1)	, and
2)	·

Types of Radiation and Decay

	Types of Radiation					
Туре	Emission	Composition	Symbol	Charge	Mass	Penetrating Power
Alpha						
decay						
Beta						
decay						
Gamma						
emission						

$$K \rightarrow Ca +$$

Practice Set 1. Write the balanced equation for the following nuclear reactions.

- 1. Uranium-233 undergoes alpha decay
- 2. Copper-63 undergoes beta decay
- 3. Beryllium-9 and an alpha particle combine to form carbon-13
- 4. Phosphorus-32 and a neutron combine to form phosphorous-33

Practice Set 2. Balance the following nuclear equations.

1.	²⁰⁸ Pb ⁸²	\rightarrow	⁴ ₂ He	+	
2.	210 Pb 82	\rightarrow	0 β	+	
3.	²²⁶ Ra ⁸⁸	\rightarrow	⁴ ₂ He	+	
4.	60 Co 27	\rightarrow	0 β	+	

Nuclear Fission

In nuclear fission, the heavy nucleus of an atom is bombarded by a ______ and splits into ______. The new isotopes formed emit ______, which can be used to split other nuclei. This process continues forming a _______. The explosion from an atomic bomb results from an ______ chain reaction.
Nuclear Fusion
The process by which two small nuclei combine to form a larger, more stable nucleus is nuclear ______. Nuclear fusion releases more energy than nuclear ______, but extremely high energies and temperatures are required to initiate and sustain fusion reactions. The ______ are powered by fusion reactions. All elements heavier than ______

are formed through nuclear fusion.

Half-Life

Radiochemical ______ is the process of determining the age of an object by measuring the amount of a certain radioisotope that remains. This process is possible because the decay rates of radioactive nuclei are ______ and are referred to as the ______ of the radioisotope.

Half-life defined:

_____ is used in radioactive dating for specimens that are less than 20,000 years old

and were once living. _____ has been used to date ancient rocks and minerals.

Half-Life Problems

Half-life problems may be solved using a mathematical formula or a step-by-step table.

Two formulas:

where n =

where t =and T =

Example: The half-life of strontium-90 is 29 years. If you had 100. g today, how much Sr-90

would remain in 116 years? (t = _____ and T = _____)

How many half-lives (n) will have passed in 116 years?

# of Half-lives	Time Passed	Amount Remaining		