UNIT 4: The Periodic Table

Aristotle	Circa 300 BC
Four element theory: earth, air, fire, water	
Antoine Lavoisier Known as Father of Modern Chemistry; compiled list of 23 to 33elements; some elements later shown to be compounds and mixtures	1770–1789
Jöns Jakob Berzelius Developed table of atomic weights; introduced element	1828
symbols; experiments discovered new elements (Ce, Se, Th) Johann Döbereiner Classified groups of elements into triads: three elements	1829
with physical and chemical similar properties; led to idea of groups (columns in Periodic Table)	
John Newlands Arranged about 60 known elements by increasing atomic weight; proposed Law of Octaves based on observed	1864
similarities between elements; led to idea of periods (rows) Julius Lothar Meyer Compiled periodic table of 56 elements based on periodicity	1869-1870
of properties when arranged in order of atomic weight	10/0 1070
Produced periodic table based on atomic weights and arranged elements with similar properties under each other; known as Father of the Periodic Table; used his table to predict physical properties of three unknown elements	1007-1070
William Ramsay	1894
Henry Moseley Determined atomic numbers of elements and modified periodic law to read that properties of elements vary	1913
periodically with atomic number	
Concluded 92 elements existed up to and including uranium	1914 1940s
Synthesized ten transuranium elements (94 thru 102 and 106); developed actinide series	20171

Periodic Law: there is a periodic repetition of chemical and physical properties of elements when they are arranged by increasing atomic number

CP/Honors Chemistry MODERN PERIODIC TABLE

The modern table maintains Moseley's arrangement and clearly shows periodicity,

which refers to trends or recurring variations in element properties caused by regular and predictable variations in atomic structure. The periodic table consists of boxes for elements arranged in order of increasing atomic number. Each box contains the element's name and symbol, atomic number, and atomic mass.

Chromium 24 Cr 51.996

The 118 element boxes are arranged in rows called periods and columns called groups or families.

- Total of seven (7) periods, numbered 1 through 7
 - Correspond to the energy levels for electron configuration
 - The Referred to as principal quantum number, n
 - The Number of electrons in an atom determines period placement
- Two numbering systems (left to right) are in effect for the groups:
 - 1. Numbered 1 through 18.
 - 2. Numbered 1 through 8 followed by the letter A or B.
 - Groups designated with the letter A are known as representative elements. They display a wide range of chemical and physical properties.
 - *©* Groups designated with the letter B are transition elements.

THE s-, p-, d-, AND f-BLOCKS

The periodic table is divided into four blocks representing the energy sublevel being filled with the last electron for an element.

Hydrogen 1.00794				c ł	مارد	k		n	hlo	ck							He Helium
3	4		5 block		P DIOCK			5	6	7	8	9	10				
Li	Be											в	С	N	0	F	Ne
Lithium 6.941	Beryllium 9.012182					_			_	_		Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12			d	bloa	rk		– f' l	aloc	·k 👘		13	14	15	16	17	18
Na	Mg				~-~							Al	Si	Р	s	CI	Ar
Sodium 22.989770	Magnesium 24,3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39,948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 4.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51,9961	Manganese 54.938049	Iren 55.845	Cobult 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83,80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118,710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium 132.90545	Barium 137.327	Lanthanum 138.9055	Hafnium 178,49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	1ridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114		(===)	(= 1 - 2)	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	(260)	(272)	(222)						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
				Cerium 140-116	Praseodymium 140.90765	Neodymium 144.24	Promethium (145)	Samarium 150.36	Europium 151.964	Gadolinium 157.25	Terbium 158 92534	Dysprosium 162.50	Holmium 164 93032	Erbiam 167.26	Thulium 168 93421	Ymerbium 173.04	Lutetium 174.967
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				Thorium 232 0381	Protactinium 231.03599	Uranium 238 0280	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)
				232.0381	231.03588	238.9289	(237)	(244)	12431	(247)	(247)	1431)	12321	(237)	(238)	(239)	12021

CLASSIFICATION OF ELEMENTS

	Metals	Nonmetals	Metalloids
Characteristics	Lustrous (shiny)	Gases or dull, brittle	Display properties of
	Solid at room	solids at room	both metals and
	temperature	temperature	nonmetals
	Tend to form cations	Tend to form anions	Solid at room
	Exception: mercury	◆ <i>Exception</i> : bromine	temperature
	is liquid metal	is liquid nonmetal	High tensile strength
	Good conductors of	Poor conductors of	Semi-conductors:
	heat and electricity	heat and electricity	conduct better than
	Ductile, malleable	(insulators)	insulators but not as
	High tensile strength	Do not react with	well as metals
	React with acids	acids	
Location on PT	Left of the stair step	Right of the stair	Border the stair step
	line	step line	line
	Most Group A		♦Exception:
	elements		aluminum
	♦Exception:		
	hydrogen		
	All Group B		
	elements		
	♦Transition metals		
	in d block		
	◆Inner transition		
	metals: lanthanide		
	and actinide series		
	in f block		

CP/Honors Chemistry GROUPS OF ELEMENTS

Group	Group Name	Group	Valence	Oxidation		e- Conf
		Properties	e ⁻	Number	Block	End
Hydrogen			1	+1	S	\mathbf{s}^1
1 or 1A Alkali Metals		Most reactive metals	1	+1	S	s ¹
2 or 2A	Alkaline Earth Metals	Very reactive metals	2	+2	8	s ²
13 or 3A	Boron Group		3	+3	р	p ¹
14 or 4A	Carbon Group	↑ in metallic character, ↓group	4	n/a	р	p ²
15 or 5A	Nitrogen Group	↑ in metallic character, ↓group	5	-3	р	p ³
16 or 6A	Oxygen Group		6	-2	р	p ⁴
17 or 7A Halogens		Most reactive nonmetals	7	-1	р	p ⁵
18 or 8A	Noble Gases	Inert, nonmetal gases	8 (2 for He)	0	p (2 for He)	p^{6} (s ² for He)
3 – 12 or B Groups	Transition Metals Periods 4–7 Final electron enters d sublevel	Less reactive metals; typically hard solids with high melting and boiling points	Varies	Varies	d	d^x x = 1 to 10
	Inner Transition Metals Lanthanide Series Actinide Series	 Rare earth metals; silvery, high melting points Radioactive elements <i>Three occur</i> <i>naturally</i> Transuranium elements (synthetic) 	Varies	Varies	f	f^{x} $x = 1 \text{ to } 14$

Valence electrons: electrons in an atom's highest principal energy level that

determine the chemical properties and behavior of an element

- Atoms in the same group have similar properties because they have the same number of valence electrons
- Energy level of valence electrons is indicated by the period
- For representative elements, the last digit of the group number indicates the number of valence electrons. Transition elements have different numbers of valence electrons under different conditions

\$	Element	# Valence Electrons	Energy Level of Valence Electrons	Configuration of Valence Electrons
	1. Hydrogen	1	1	$1s^1$
	2. Nitrogen	5	2	$2s^22p^3$
	3. Magnesium	2	3	$3s^2$
	4. Silicon	4	3	$3s^23p^2$
	5. Sulfur	6	3	$3s^23p^4$
	6. Krypton	8	4	$4s^24p^6$

lons

Ø

- Neutral atoms have no overall electrical charge because they have equal numbers of positively charged protons and negatively charged electrons.
- Noble gases have stable configurations because the s and p orbitals of their highest energy level are filled, forming a stable octet.
 - Exception: helium has only two s e⁻ in its highest energy level (duet)
- Atoms gain or lose electrons to increase stability by attaining electron configurations similar to that of the noble gases.
- Such an atom is no longer neutral but has become a charged particle known as an ion.
 - Metals: lose electrons to become cations (positive ions)
 - Nonmetals: gain electrons to become anions (negative ions)

CP/Honors Chemistry

Write the electron configuration for a neutral potassium atom. Circle valence e⁻.

 $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{1}$

W Write the electron configuration for a potassium ion.

 $1s^22s^22p^6s^23p^6$

I Write the electron configuration for a neutral argon atom.

 $1s^22s^22p^6(s^23p^6)$

Oxidation number (or **state**): the positive or negative charge of a monatomic

ion. It equals the number of electrons transferred when an atom forms its ion.

- Predicted by the group or family of an element
- Positive when electrons are lost; negative when electrons are gained
- Written above group number on periodic table
- Noble gases have oxidation number of 0; they do not transfer electrons and do not form ions.
- Elements in the carbon group have no oxidation number; they do not typically form ions.

Elem	ent Name	Element Symbol	Oxidation Number	Symbol for Ion	Configuration of Ion (noble gas configuration)
1. H	Hydrogen	Н	+1	H^{+}	N/A
2. N	Magnesium	Mg	+2	Mg ²⁺	$1s^22s^22p^6$
3. (Dxygen	0	-2	O ^{2–}	$1s^22s^22p^6$
4. A	Aluminum	Al	+3	Al ³⁺	$1s^22s^22p^6$
5. N	Nitrogen	Ν	-3	N^{3-}	$1s^22s^22p^6$
6. 5	Sodium	Na	+1	Na ⁺	$1s^22s^22p^6$
7. 5	Sulfur	S	-2	S ^{2–}	$1s^22s^22p^63s^23p^6$
8. 0	Calcium	Ca	+2	Ca ²⁺	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}$
9. (Chlorine	Cl	-1	Cl ⁻	$1s^22s^22p^63s^23p^6$
10. I	Bromine	Br	-1	Br ⁻	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶

OCTET RULE

Atoms tend to gain, lose, or share electrons to acquire a full set of eight valence electrons. First energy level is complete with only two electrons (duet).

Practice

1. Elements #110 through #118 are the most recently discovered elements. For these nine elements, complete the table below.

Atomic	Element Name	Element	Discovered	Group	#	Most closely
#		Symbol	in		ve	resembles
110	Darmstadtium	Ds	1994			
111	Roentgenium	Rg	1994			
112	Copernicium	Cn	1996			
113	Ununtrium	Uut	2003			
114	Flerovium	Fl	1998			
115	Ununpentium	Uup	2004			
116	Livermorium	Lv	2000			
117	Ununseptium	Uus	2009			
118	Ununoctium	Uuo	2002			

1. Explain the term *representative elements*.

What is the primary difference between the representative elements and the transition elements? (*Think: electron configuration.*)

- 2. The numbers and locations of valence electrons determine the _________ of elements.
- 3. Oxygen is a gas. Sulfur is a solid. What is it about their electron structures that cause them to be grouped in the same chemical family?
- 4. Identify the element fitting each of the following descriptions:
 - a. The metalloid in group 3A: _____
 - b. The halogen in period 5: _____
 - c. The alkali metal in period 4: _____
 - d. The nonmetal that is a liquid at room temperature: _____
- 5. Why about zinc, cadmium, and mercury cause them to be in the same chemical family?

CP/Honors Chemistry PERIODIC TRENDS: ATOMIC RADIUS

Atomic radius: one half the distance between the nuclei of two atoms of the same element that are bonded together

Trends within periods (L to R) Atomic radius DECREASES Why? ↑electrostatic attraction (greater positive charge in nucleus pulls orbitals closer); e⁻ added to same principal energy level within period (no shielding of valence e⁻) Trends within groups (bottom to top) Atomic radius DECREASES Why? As positive nuclear charge increases, e⁻ are added to higher energy levels, and outer orbital increases in size; valence e⁻ are further from nucleus and are shielded by inner e⁻

Atoms with largest atomic radii: Group 1 and atoms in last period of other groups

Practice

- Which has the largest atomic radius: lithium (Li), beryllium (Be), nitrogen (N), or neon (Ne)? _____ The smallest? _____
- 2. Which has the largest atomic radius: sodium (Na), potassium (K), rubidium (Rb) or cesium (Cs)? _____ The smallest? _____
- 3. Circle the element in each pair with the largest atomic radius.

Na or K	Na or Mg	O or F	Br or I	Ti or Zr
---------	----------	--------	---------	----------

- 4. Rank the following elements from smallest to largest atomic radius: Na, Mg, Cl, K, Rb.
- 5. Which has the largest atomic radius: potassium (K) or magnesium (Mg)?
- 6. Which has the smallest atomic radius: aluminum (Al) or barium (Ba)?Unit 4 Periodic TrendsP a g

PERIODIC TRENDS: IONIC RADIUS

Ionic radius: one half the distance between the nuclei of two adjacent ions of the same element

When atoms form cations, they become smaller. Why? Loss of edecreases number of valence e^- and electrostatic repulsion; more p^+ than $e^$ holds e^- more tightly to nucleus When atoms form anions, they become larger. Why? Gain of e-; added $e^$ increase electrostatic repulsion forcing e^- to spread apart; more e^- than p^+ decreases electrostatic attraction <u>Trends within periods</u> (L to R) Ionic radius DECREASES Anions begin to appear in carbon group. See Figure 6-14, p. 166.

<u>Trends within groups</u> (bottom to top) Ionic radius DECREASES When ion's outer electrons are in higher principal energy levels, size of ion increases

Practice

Underline the one in each pair with the larger radius.

- 1. a calcium atom or a calcium ion
- 2. a chlorine atom or a chloride ion
- 3. a magnesium ion or an aluminum ion
- 4. a sodium atom or a silicon atom
- 5. a potassium ion or a bromide ion
- 6. a potassium atom or a potassium ion
- 7. a sodium ion or a chloride ion
- 8. a strontium atom or an iodine atom
- 9. a rubidium ion or a strontium ion

PERIODIC TRENDS: IONIZATION ENERGY (IE)

Ionization energy: the minimum amount of energy required to remove an electron from a gaseous atom; must overcome the attraction between the positive charge in the nucleus and the negative charge of the electron

First ionization energy: required to remove the first electron from an atom Second ionization energy: required to remove the second electron from 1+ ion Third ionization energy: required to remove a third electron from a 2+ ion, *etc*.

<u>Trends within periods</u> (L to R) Ionization energy INCREASES

Why? Increased nuclear charge increases hold on valence e⁻, making them more difficult to remove <u>Trends within groups</u> (bottom to top) Ionization energy INCREASES

Why? Higher the energy level of valence e-, further from nucleus, and less energy is required to remove them

Practice

- 1. Does sodium (Na) or potassium (K) have a higher first ionization energy?
- 2. Does magnesium (Mg) or argon (Ar) have a higher first ionization energy?
- 3. Explain why much more ionization energy is required to remove the first electron from neon than from sodium.
- 4. Why does barium (Ba) have a lower ionization energy than beryllium (Be)?

PERIODIC TRENDS: ELECTRONEGATIVITY

Electronegativity: the ability of atoms to attract electrons in a chemical bond -

expressed as number value of 4.0 or less with the unit Paulings

- Differences in electronegativity determine the types of bonds formed
- Electronegativity of noble gases is not usually included

Shade the box of the element with the *highest* electronegativity. (fluorine)

*P*Outline the box of the element with the *lowest* electronegativity. (francium)

Practice

- 1. Does magnesium or aluminum have a higher electronegativity value?
- 2. Does nitrogen or phosphorous have a higher electronegativity value?
- 3. Does calcium (Ca) or bromine (Br) have a higher electronegativity value?
- 4. Does sodium (Na) or potassium (K) have a higher electronegativity value?
- 5. Which atom is more electronegative: hydrogen (H) or oxygen (O)?
- 6. Which atom is more electronegative: carbon (C) or chlorine (Cl)?
- 7. Which atom is more electronegative: magnesium (Mg) or oxygen (O)?
- 8. Which atom is more electronegative: sodium (Na) or chlorine (Cl)?

PERIODIC TRENDS: REACTIVITY

Reactivity: refers to how readily chemical substances undergo chemical reaction – related to several factors, including the number of valence electrons, ionization energy, and electronegativity

- Metals: more reactive if have low number of valence electrons and low ionization energies
- Nonmetals: more reactive if have larger numbers of valence electrons and

high electronegativity values

<u>Trends within periods</u> (L to R) <u>Metals</u>: Reactivity DECREASES <u>Nonmetals</u>: Reactivity INCREASES <u>Trends within groups</u> (bottom to top) <u>Metals</u>: Reactivity DECREASES <u>Nonmetals</u>: Reactivity INCREASES

Shade the element box of the most reactive metal: francium

*P*Outline the box of the most reactive nonmetal: fluorine

Practice

- 1. Which metal is more reactive: sodium (Na) or rubidium (Rb)?
- 2. Which nonmetal is more reactive: oxygen (O) or sulfur (S)?
- 3. Which element is more reactive: magnesium (Mg) or aluminum (Al)?
- 4. Which element is more reactive: phosphorous (P) or chlorine (Cl)?