Chapter 9
 Unit 6 Chemical Equations Guided Notes

- Process by which atoms of one or more substances are rearranged to form different substances
- AKA chemical change
- Reactants react to form products, which have different compositions from reactants
- REVIEW Evidence that chemical reaction has occurred:

1. Formation of a GAS
2. Formation of a PRECIPITATE
3. Change in COLOR
4. Change in or production of $O D O R$
5. Change in MAGNETISM
6. Change in temperature or ENERGY

- Exothermic: releases energy (temperature increases)
- Endothermic: absorbs energy (temperature decreases)
- Formulas show chemistry at a standstill. Equations show chemistry in action.
- Equations show:

1. The reactants that enter into a reaction
2. The products that are formed by the reaction
3. The relative amounts of each substance used and produced

- Two Important Principles

1. Every chemical compound has one correct formula, which cannot be altered
2. A chemical reaction must obey the Law of Conservation of Matter, which states In a chemical reaction, atoms are neither created nor destroyed.

- General formula for equations:

$$
\text { reactant + reactant } \rightarrow \text { product }+ \text { product }
$$

- Symbols used in equations

Symbol	Meaning	Symbol	Meaning
+	Separates two or more reactants or products	\rightarrow	Separates reactants from products; "yields or "forms"
(s)	Identifies solid state	(I)	Identifies liquid state
(g)	Identifies gaseous state	(aq)	Identifies aqueous (water) solution

- Word Equations

Indicate the reactants and products in a reaction using words.

- Skeleton Equations

Use chemical formulas rather than words to indicate reactants and products

- Balanced Chemical Equations

1. Reflect the Law of Conservation of Matter.
2. The number of atoms of one element on one side of the equation must equal the number of atoms of that element on the other side of equation.

Reaction: Carbonic acid decomposes to produce water and carbon dioxide gas.
Word Equation: \quad carbonic acid (aq) \rightarrow water (I) + carbon dioxide (g)
Skeleton Equation:

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Balanced Equation: $\quad \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
Reaction: Magnesium ribbon reacts with oxygen in the air to produce solid magnesium oxide.
Word Equation magnesium $(\mathrm{s})+$ oxygen $(\mathrm{g}) \rightarrow$ magnesium oxide (s)
Skeleton Equation: $\quad \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$
Balanced Equation: $\quad 2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
Reaction: Hydrogen and oxygen gases combine to form water.
Word Equation
hydrogen (g) + oxygen (g) \rightarrow water (I)
Skeleton Equation:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Balanced Equation:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (I)

Subscripts

- Whole numbers written to lower right of element symbols in chemical formulas
- Indicate number of atoms/ions present in one particle of a compound
- A subscript of 1 is not written
- Once correct formula is written, subscripts changed cannot be changed

Coefficients

- Whole numbers written in front of chemical formulas in a chemical equation
- Describe the lowest whole number ratio of all reactants and products in a reaction
- A coefficient of 1 is not written.
- Coefficients—not subscripts—are to balance equations.

